

Leading Conversion Technology for Power Resilience

NEXT GEN MULTI-MODE INV

100 KW + MULTIPLE CABINETS IN PARALLEL UPTO 1.62MW

User Manual

THE NEW GENERATION OF POWER CONVERTERS FOR USE WITH DISTRIBUTED ENERGY RESOURCES(UL1741 CERTIFIED)

- DUAL AC AND DC OUTPUT CONVERTER Commercial Power as default source
- AC AND DC BACKUP IN A DC ENVIRONMENT Leverage your existing DC infrastructure
- ONE STOP SHOP Wide output power range
- HARSHEST AC INPUT CONDITIONS Without compromising the quality of the AC output

Copyright © 2024. Construction electroniques & telecommunications S.A. All rights reserved. The contents in document are subject to change without notice. The products presented are protected by several international patents and trademarks. Address: CE+T S.a. Rue du Charbonnage 12, B 4020 Wandre, Belgium www.cet-power.com - info@cet-power.com

Table of Contents

1.	CE+T Power at a glance				
2.	Abbre	viations	6		
3.	Warra 3.1 3.2	Disclaimer	7 7 7		
	3.3	Installation	8		
		3.3.1 Handling	8		
		3.3.2 Surge and Transients Protection	9		
		3.3.3 Other	9		
	3.4		9		
	3.5	Replacement and Dismantling	9		
	3.6	Documentation	9		
4.	ECI Te	chnology1	0		
	4.1		1		
	4.2	DC-AC mode	1		
5.	Buildi	ng Blocks1	2		
	5.1	5.1.1 Specifications	2 4		
	5.2		4		
	5.3		5		
		5.3.1 Inview X - Connections	5		
	5.4	Measure Box Battery (MBB)	6		
	5.5	Surge Arresters	6		
6.	Next (Gen Design and Description	7		
	6.1	Next Gen 100 kW System Design	7		
	6.2	Next Gen 100 kW System Description	8		
		6.2.1 Next Gen 100 kW System - General arrangement	8		
	6.3	Installation Considerations	8		
		,	9		
		·	9		
		·	20		
		·	20		
	6.4	External Maintenance Bypass Switch	21		
7.	Syster	m Installation	2		
	7.1	Site Preparation	2		
			2		
	7.2		23		
	7.3	Module packing	23		

	7.4	Anchoring the cabinet to the floor
	7.5	Cabling
		7.5.1 Cable Inlets
		7.5.2 Grounding
		7.5.3 AC Input and Output
		7.5.4 DC Input
		7.5.5 Signal Cable - Customer Connections
		7.5.6 Field Wiring Kits
	7.6	Cabinet Paralleling using PEK
		7.6.1 Power Extension Kit (PEK)
		7.6.2 Power Extension Kit connections with the system
		7.6.3 ID and Phase configurations of the Power Extension Kit
8.	Opera	tion
	8.1	Inview X - LCD Interface
		8.1.1 Menu Structure
		8.1.2 LED Indications
	8.2	Inview X - Web Interface
		8.2.1 Login
		8.2.2 Home Page
	8.3	Switching off the system
Λ	Incorti	
9.	9.1	3 3 3
	9.1	Sierra Converter 9.1.1 Removal
		9.1.2 Inserting
	9.2	Inview X
	9.2	9.2.1 Replacement of Panel Mount Display
	9.3	Fan replacement
10.	Final o	check
11.	Comm	nissioning
	11.1	Check list
12	Troubl	e shooting
12.		Trouble shooting
		Defective modules
	14.4	12.2.1 Replacing modules
		12.2.2 Return defective Inview controller
		12.2.3 Return defective shelf
		12.2.4 Return defective modules
	122	Spare Parts
13.	Servic	e
14.	Maint	enance Task

Release Note:

Version	Release date (MM/DD/YYYY)	Modified page number	Modifications
1.0	10/22/2020	-	Draft release of the manual
1.1	02/13/2021	8 – 9	Added Arc-Flash Warning, Various Formatting Edits
1.2	05/03/2021	Various	Various modifications made per UL requirements.
1.3	04/13/2024	Various	Various modifications made per UL1741 requirements
1.4	07/25/2024	Various	Various modifications made per UL1741 requirements

1. CE+T Power at a glance

CE+T Power is your trusted partner in advanced power solutions engineered to meet the demands of modern and dynamic industrial applications. With over 60 years of experience in power conversion technology, CE+T Power nurtures the industry with innovative solutions designed for critical power backup and energy management.

Our complete range of power solutions includes **modular inverters** (AD to AC/DC or DC to AC/DC), Multi Mode INV (securing AC & DC loads use with DER), and multi-directional converters (inverter, rectifier, and INV all-in-one). Coupled with our state-of-the-art **monitoring solution**, you have a real energy blender to connect multiple sources of energy seamlessly!

Whether you require robust backup power solutions, energy management solutions, or a combination of both, CE+T Power delivers tailored solutions to meet your specific needs. Our products are designed with integration in mind, ensuring seamless compatibility with other components of your system. CE+T Power is committed to providing you with the expertise and resources needed to maximize the performance of your power systems.

Thank you for choosing CE+T Power as your partner in advanced power management. Let's power the future together.

2. Abbreviations

AC Alternating current
CB Circuit Breaker
DC Direct current

DER Distributed Energy Resources

DHCP Dynamic Host Configuration Protocol

DSP Digital Signal Processor

ECI Enhanced Conversion Innovation
EMBS External Maintenance Bypass Switch

EPC Enhanced Power Conversion
ESD Electro Static Discharge

ETH Ethernet

G Ground / Grounding

HTTP Hyper Text Transfer Protocol

HTTPS Secure Hyper Text Transfer Protocol

LAN Local Access Network
MBB Measure Box Battery
MBP Manual By-pass

MCB Miniature Circuit Breaker
MCCB Molded Case Circuit Breaker

MET Main Earth Terminal

MIB Management Information Base

N Neutral

NTP Network Time Protocol
NUA Non-Urgent Alarm
PCB Printed Circuit Board

PE Protective Earth (also called Main Protective Conductor)

PEK Power Extension Kit

PPE Personal Protective Equipment

PWR Power REG Regular

SNMP Simple Network Management Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TRS True Redundant Structure

UA Urgent Alarm

USB Universal Serial Bus

3. Warranty and Safety Conditions*

WARNING: Important Safety Instructions, Save These Instructions.

The electronics in the power supply system are constructed in an IP20 frame. Installation of the system must be in an environment which meets or exceeds IP35 standards. The room (or building) must be protected from the ingress of:

- particles >2.5 mm diameter
- low pressure water jets from all directions
- corrosive airborne contaminates

3.1 Disclaimer

- The manufacturer declines all responsibilities if equipment is not installed, used, or operated according to the instructions herein by factory certified technicians according to local regulations.
- Warranty does not apply if the product is not installed, used, or handled according to the instructions in the
 manual. Manufacturer may waive warranty if the system is not installed and commissioned by factory trained
 technician.
- This equipment is shipped with a SHOCKWATCH monitor. If the SHOCKWATCH shows that the equipment was
 exposed to excessive force the warranty will be void.
- When shipped by truck, the truck must be equipped with Air Ride handling.

3.2 Technical care

- This electronic equipment can only be repaired or maintained by a "qualified employee" with adequate training.
 Even personnel who are in charge of simple repairs or maintenance are required to have knowledge or experience related to product maintenance.
- Please follow the procedures contained in this Manual, and note all the "DANGER", "WARNING" AND "NOTICE"
 marks contained in this Manual. Warning labels must not be removed.
- Qualified employees are trained to recognize and avoid any dangers that might be present when working on or near exposed electrical parts.
- Qualified employees know how to lock out and tag out machines so the machines will not accidentally be turned on and injure employees working on them.
- Qualified employees are trained in OSHA and NFPA safety related work practices, and NFPA 70E Arc Flash Protection and PPE requirements.
- All operators are to be trained to perform the emergency shut-down procedure.
- Never wear metallic objects such as rings, watches, or bracelets during installation, service, and maintenance of the product.
- Maximum operating ambient temperature for the Multi Mode INV is 40°C (104°F).
- Insulated tools must be used at all times when working with live systems.

^{*} These instructions are valid for most CE+T Products/Systems. Some points might however not be valid for the product described in this manual.

- When handling the system/units pay attention to sharp edges.
- This product is suitable for use in a computer room.

3.3 Installation

- This product is intended to be installed only in restricted access areas as defined by UL60950 and in accordance with the National Electric Code, ANSI/NFPA 70, or equivalent agencies.
- The user must observe the recommended UL listed upstream and downstream circuit breaker requirements as defined in this manual.
- An External AC (Upstream and Output) and an external DC disconnect devices to be provided by others during
 installation.
- An External AC (Upstream and Output) and external DC over current protection to be provided by others during installation.
- Please use extreme caution when accessing circuits that may be at hazardous voltages or energy levels.
- The modular converter rack is a dual input power supply. The complete system shall be wired in a way that both input and output leads can be de-energized when necessary.
- To comply with local and international safety standards N (input) and PE shall be bonded. The bonded connection between N (input) and PE must be removed once the AC input is connected.
- AC and DC circuits shall be terminated with no voltage / power applied (de-energized).
- The safety standard IEC/EN62040-1-1 requires that, in the event of an output short circuit, the converter must
 disconnect in 5 seconds maximum. The parameter can be adjusted on Inview or equivalent device; however, if
 the parameter is set at a value > 5 seconds, an external protection must be provided so that the short circuit
 protection operates within 5 seconds. Default setting is 60 seconds.
- The system is designed for installation within an IP20 environment. When installed in a dusty or humid
 environment, appropriate measures (air filtering) must be taken. Installation of filters may result in de-rating of
 module.
- Environmental Conditions for INV System (not including batteries): -40 to 70°C
- Warning For Units rated 120V output; To reduce the risk of fire, do not connect to an AC Load center(Circuit Breaker Panel) having multi wire branch circuits connected.
- Relative Humidity: 0 95%, non-condensing
- Altitude above sea without de-rating: Less than 1500 m

Greater than 1500 m: de-rating at 0.8% per 100 m

3.3.1 Handling

- The cabinet shall not be lifted using lifting eyes.
- Remove weight from the cabinet by removing the converter modules. Mark converter modules clearly with shelf
 and position for correct rebuild. This is especially important in dual or three phase configurations.
- Empty module positions must not be left open. Replace with blank module or cover.
- This equipment is shipped with a SHOCKWATCH monitor. SHOCKWATCH monitor should be inspected upon
 receipt of shipment. If the SHOCKWATCH shows that the equipment was exposed to excessive force the warranty
 will be void.

3.3.2 Surge and Transients Protection

The mains (AC) supply of the modular converter system shall be equipped with Lightning surge suppression and Transient voltage surge suppression suitable for the application. Follow manufacturer's recommendation for installation. Selecting a device with an alarm relay for function failure is advised.

All sites are considered to have a working lightning surge suppression device in service and installed close enough to ensure effective protection in accordance with best industry practice.

- Indoor sites Min Class II.
- The modular converter system/rack can reach hazardous leakage currents. Grounding must be carried out prior to energizing the system. Grounding shall be made according to local regulations.

3.3.3 Other

 Insulation test (Hi-Pot) must not be performed without instructions from the manufacturer. Irreparable damage may occur.

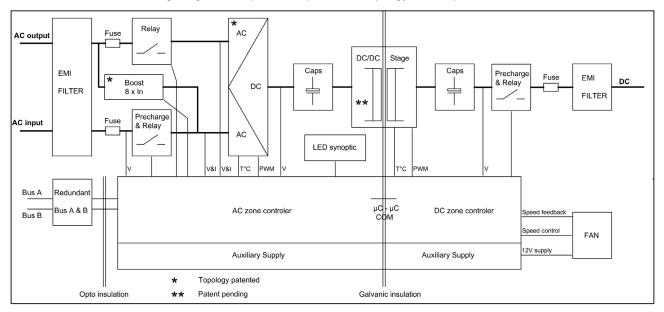
3.4 Maintenance

- The modular converter system/rack can reach hazardous leakage currents. Grounding must be carried out prior to energizing the system. Grounding shall be made according to local regulations (NEC - NFPA 70).
- Prior to any work conducted on a system/unit make sure that AC input voltage and DC input voltage are disconnected.
- Converter modules and shelves contain capacitors for filtering and energy storage. Prior to accessing the system/modules after power down, wait at least 5 minutes to allow capacitors to discharge.
- Some components and terminals carry high voltage during operation. Contact may result in fatal injury.

3.5 Replacement and Dismantling

- ESD Strap must be worn when handling PCB's and open units.
- CE+T cannot be held responsible for disposal of the Converter system and therefore the customer must segregate and dispose of the materials which are potentially harmful to the environment, in accordance with the local regulations in force in the country of installation.
- If the equipment is dismantled, to dispose of its component products, you must comply with the local regulations in force in the country of destination and in any case avoid causing any kind of pollution.

3.6 Documentation


- To obtain soft copies of the latest equipment documentation, please visit www.cet-power.com
- To obtain the most recent firmware for your equipment, please visit <u>my.cet-power.com</u> (authorized vendors only)

4. ECI Technology¹

A Sierra module is a triple port converter built with ECI technology. This module delivers pure sinusoidal output and ripple free DC output from AC mains or battery.

The below block diagram gives an explicit description of the topology and its operation.

ECI technology has **AC** to **DC**, **DC** to **AC**, and **DC** to **DC** converters to provide constant and disturbance-free output power regardless of the input source.

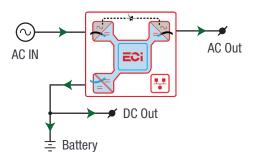
The power flows either from AC or DC source under the control of the DSP controller. Thanks to the module's internal energy buffering, transferring the load between two input sources is achieved in 0 ms.

ECI can detect short circuit conditions at the AC output level and start the BOOST mode function. This mode will provide 8x of the nominal current to clear the fault within 20 ms, and thus keeping other critical loads in operation.

Sierra module works on True Redundant Structure (TRS) that features decentralized, independent logic, and redundant communication bus.

Each Sierra module has three levels of protection, and it will help to isolate from other modules in case of any fault in the corresponding module. Due to this functionality in each module, it provides no single point of failure in modular systems.

The Sierra modular systems provide quality output power with higher efficiency.

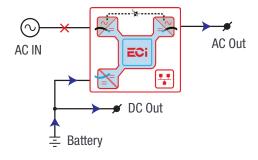

¹ Information and data given in this chapter is intended to serve as an overview of the ECI Technology. Detailed features and parameters for each individual module type in the range may differ and should be referred to in the dedicated data sheet.

4.1 AC-AC mode

In AC-AC mode, the **AC Mains** is the primary source and DC source works as a backup. When AC mains is present, the Sierra module takes energy from the AC source and feed to:

- AC Load via a double conversation to provide a pure sine wave.
- DC load and also charges the battery with a regulated DC.

The total output power of a module can be shared between the AC load, DC load and charging power based upon the requirement.


If the AC source is not present, the module seamlessly switches to DC source without impacting the critical loads and resumes to EPC mode once AC source returns. The transfer time between AC to DC and DC to AC is 0 ms.

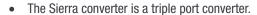
The EPC mode provides a higher efficiency of $\geq 96\%$ without compromising the purity of the output sine wave.

4.2 DC-AC mode

In DC-AC mode, module operates in DC source and feed to:

- AC Load via a double conversation to provide a pure sine wave.
- · DC load directly.
- Measure Box Battery (MBB) is used for DC power calculation.

5. Building Blocks


5.1 Sierra 25 - 120 Vac

Telecom / Datacom: Input 52 Vdc

120 Vac, 50/60 Hz

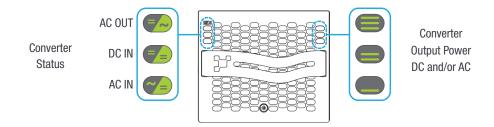
Output 52 Vdc 120 Vac

Power 2.75 kVA / 2.25 kW

- Each converter can supply 2.25 kW on any DC, AC or combination of both AC and DC output ports. AC output load is the highest priority. Even if AC output is fully loaded (2.25 kW), still 300 W is available for DC output.
- Hot swappable and hot pluggable.
- The front LED's indicate the converter status and output power.
- The module is equipped with soft start.
- Module fan is field replaceable.
- 435 mm (D) x 102 mm (W) x 88 mm (H).
- 5 Kg.

5.1.1 Specifications

Model	Sierra 25 - 48/120		
Part Number: Module / shelf	T721330201 / T724330000		
Cooling / Audible noise	Fan forced cooling / <65db @1meter		
MTBF	240 000 hrs (MIL-217-F) at 30°C ambient and 80% load		
Dielectric strength DC/AC	4300 Vdc		
RoHS	Compliant		
Operating T° / Relative Humidity (RH) non-condensing	Tested according ETS300-019-2-3 Class 3.1 -20°C to 65°C, power de-rating from 40°C to 65°C / Max RH 95% for 96 hours per year		
Storage T° / Relative Humidity (RH) non-condensing	Tested according ETS300-019-2-1 Class 1.2 -40°C to 70°C / Max RH 95% for 96 hours per year		
Public transport T°/Relative Humidity (RH) non-condensing	Tested according ETS300-019-2-2 Class 3.1 -40°C to 70°C / Max RH 95% for 96 hours per year		
Material (casing)	Zinc coated steel		
AC Input Data			
Nominal voltage	120 Vac		
Voltage range	90 - 140 Vac		
Brownout	1600 W @ 90 Vac / 2550 W @ 100 Vac linear decreasing		
Power factor	> 0.99		
Frequency (Synchronization range)	50 Hz (47 – 53 Hz) / 60 Hz (57 – 63 Hz)		



Model	Sierra 25 - 48/120		
DC Input Data			
Nominal voltage / range	52 Vdc / 40-60 V		
Nominal current	52.3 A @ 52 Vdc & 2.25 kW		
Maximum input current (for 15 seconds) / voltage ripple	63 A / < 10 mV _{RMS}		
AC Output Data			
Efficiency AC to AC (EPC) / DC to AC / AC to DC	94.5% / > 92.5% / > 92.5%		
Nominal voltage (Adjustable)	120 V (100 - 130 Vac)		
Frequency / frequency accuracy	50 or 60 Hz / 0.03%		
Nominal Output power	2.75 kVA / 2.25 kW @ 52 Vdc		
Short time overload capacity	125% (15 seconds)		
Admissible load power factor	Full power rating from 0 inductive to 0 capacitive		
Total harmonic distortion (resistive load)	< 3%		
Load impact recovery time (10% - 90%)	≤ 0.4 ms		
Nominal current	22.9 A @ 48 Vdc		
Crest factor at nominal power	3 : 1 for load P.F. ≤ 0.7		
Short circuit clear up capacity 0-20 ms	200 A for 20 ms - Available while Mains is available at AC input port / 34A RMS in DC/AC		
Short circuit current after >20 ms -15 s	42 A RMS		
AC output voltage stability	±1% from 10% to 100% load		
DC Output Data			
Nominal Voltage / range	53.5 Vdc / 40-60 V		
Maximum power	2.25 kW		
Maximum current	46.8 A @ 52 Vdc		
Reverse polarity protection	Yes		
Efficiency AC to DC	> 92.5%		
In Transfer Performance			
Max. Voltage interruption / total transient voltage duration (max)	0 sec / 0 sec		
Signaling & Supervision			
Display	Synoptic LED		
Supervision / Part number	Inview X / T602004200		
Remote on / off	On rear terminal of the shelf through Inview X		
Battery Monitoring / Part number	MBB (Measure Box Battery) / P602006000		
Safety & EMC			
Electrical Safety	UR-1778		
EMC	EN 61000-4-2 / EN 61000-4-3 / EN 61000-4-4 / EN 61000-4- 5 / EN 61000- 4-6 / EN 61000-4-8 / ETSI EN 300386 v1.9.1 / FCCpart 15 class A		

5.1.2 Converter - LED Indications

Converter Status LED	Description	Remedial action
OFF	No input power or forced stop	Check environment
Permanent green	Normal Operation	
Blinking green	Converter OK but working conditions are not fulfilled to operate properly	
Blinking green/orange alternatively	Recovery mode after boost (10 In short circuit condition)	
Permanent orange	Starting mode	
Blinking orange	Modules cannot start	Check Inview
Blinking red	Recoverable fault	
Permanent red	Non recoverable fault	Replace module

	Output Power (redundancy not counted)							
<5%	5% to 40%	40 to 80%	80 to 95%	100%	100% = overload	Output Power (redundancy not counted)		
×	×	×	=	=	=			
×	×	=	=	=	=	Status output power LED		
_	_	_	×	_	_			
1B	1P	2P	2P	3P	3B	Behaviour (B = Blinking, P = Permanent)		

5.2 Sub-rack

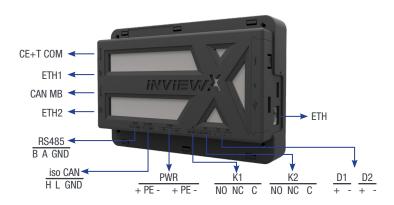
- The Sierra shelf shall be integrated in min 600 mm deep cabinets, Inch/ETSI mounting.
- The Sierra shelf house max four (4) converter modules.
- The Sierra shelf is designed with individual DC input / output, Common AC input and Common AC output.
- Optional rear cover for IP 20 in open rack.
- Max 12 kVA per shelf.
- 480 mm (D) x 19" (W) x 2U (H).
- 6 Kg empty.

5.3 User Interface - Inview X

Inview X is an advanced monitoring and controller unit for power systems. It allows the user to easily view, access, configure the system information through LCD screen graphic display and web interface. The home screen of both LCD and web interface provides a summary of system power, modules, batteries, and events information.

The Ethernet ports in Inview X allow multiple communication points for remote communication, Web interface, and connecting the accessories such as Measure Box Battery, Measure Box DC load, and Measure Box AC.

Inview X interface provides the user access to the configuration and setup files of the modules that are connected in the system. It is also a controller for DC regulation.


Inview X can monitor up to 50 modules and featured with:

- 7" LCD touch screen display
- Two Digital Inputs
- Two Output Relay contacts
- Records 5000 events as FIF0

5.3.1 Inview X - Connections

Inview X composed of multiple network ports and inbuilt free potential contacts.

- CE+T COM port is dedicated to establish a connection between Inview X and Sierra shelf.
- ETH1 and ETH2 ports are used for network connectivity, and user can access the system information through the web interface.
- CAN MB port is used to share the system information to the accessories such as Measure Box Battery and Measure Box DC Load. It also provides the +12 Vdc power up to three accessories which are connected in series.
- iso CAN is used for CAN communication.
- RS485 is used for Modbus communication.
- USB port is used to access the Inview X configuration and setup files.

- Digital Inputs (D1 and D2): Two potential free Digital Inputs are available for customer connections.
 - Digital Input 1 is assigned for MBP operation if used.
 - Digital Input 2 is assigned for Surge Arrester if used.
- Output Relays (K1 and K2): Two output relays are available and can be used for Major and Minor Alarms
- Power: The unregulated separate +48 V power supply is required for powering Inview X and this power should not be shared with other devices. (CET can provide Auxiliary Power Supply converter; the part number is T602004120).

5.4 Measure Box Battery (MBB)

Measure Box Battery is a unit which monitors the Battery. It is composed of multiple digital inputs and analog outputs. They are used for:

- Battery management
 - Voltage (V1 to V3)
 - Current (I1 to I3)
 - Temperature (T1 and T2)
 - Driving the Low Voltage Disconnection
- 8 Digital Input (D1 to D8)
- 6 Output Relay (k1 to K6)

Note: Some digital inputs and relay outputs may be used for internal monitoring and may not be available for customer use. Refer to MBB user manual for more information.

The mains (AC) supply of the modular converter system shall have suitable Lightning surge suppression and Transient voltage surge suppression installed. The manufacturer's recommendations of installation shall be followed. It is recommended to select a device with an alarm relay for function failure.

Indoor sites are considered to have a working lightning surge suppression device in service.

Indoor sites
 Min Class II.

Lightning surges in converter circuits can cause immediate and catastrophic equipment failure. Surges from induced lightning and power switching operations are smaller but are more numerous and can result in equipment misoperation, lockup or damage.

Some areas are more susceptible to lightning than other areas, whereas the intensity dramatically increases with the altitude.

The selection of the surge arresters, as well as their installation, shall adhere to strict rules. Not adhering to these rules could simply void their actions. The selection of the surge arrester and its physical implementation cannot be covered in this document. The installer must analyze the local conditions and he should require the site to be inspected to cover his liability.

In any case, converter damages that could be related to improper protection are not covered by CE+T product warrantv.

Caution: For continued protection against the risk of fire, replace only with the same type and rating of fuse.

6. Next Gen Design and Description

6.1 Next Gen 100 kW System Design

Next Gen 100 kW systems are cabinetized modular converters specifically designed for clean and temperature-controlled environments.

- · Telecom grade design
- The system cannot be directly against a wall. A minimum rear clearance of 12 inches is required
- The system is intended for Central Offices only
- Based on Sierra 25 120 Vac / 48 Vdc Power Module
- Fully modular
- Support redundant configurations
- Cabinet NEMA 1 (IP 20)
- · System designed for either top or bottom cable entry

Figure 1. Next Gen System - 100 kW

6.2 Next Gen 100 kW System Description

Next Gen 100 KW System comes fully equipped with

Inview controller's and remote monitoring capabilities.

6.2.1 Next Gen 100 kW System - General arrangement

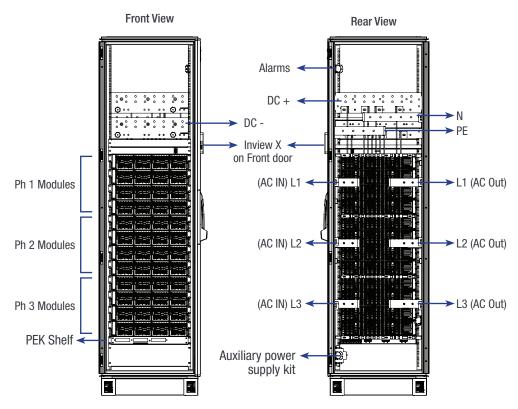


Figure 2. Next Gen 100 kW Power Cabinet - General Arrangement

Note: Rear view drawing is shown with cover removed.

6.3 Installation Considerations

- All models of Next Gen are Listed according to UL 1778 5th edition (File E323449) and UL1741 (File Exxxx).
- All models of Next Gen are FCC compliant according to report L1R90028 issued by SGS Germany on June 19th, 2017.

6.3.1 Three Phase Configuration – 208 VAC (L-L-L-N+G)

Three-phase systems are 120 VAC L to N and 208 VAC from phase to phase. Input and output are made with 4 wires + (PE) Ground. An AC input neutral must be connected in a Wye configuration. The AC output may be connected in either Delta or Wye.

System Code	System Model					
Inverter and Conv	Inverter and Converter					
Code A	NxtGn-INV&CONV(UPS)-000-048-100-3-100-048-048-208					
Code B	NxtGn-INV&CONV(UPS)-000-048-100-3-080-039-039-208					
Code C	NxtGn-INV&CONV(UPS)-000-048-100-3-060-030-030-208					
Code D	NxtGn-INV&CONV(UPS)-000-048-100-2-067-032-032-240					
Code E	NxtGn-INV&CONV(UPS)-000-048-050-3-047-024-024-208					
Code F	NxtGn-INV&CONV(UPS)-000-048-050-2-030-016-016-240					
Code G	NxtGn-INV&CONV(UPS)-000-048-050-1-030-016-016-120					
Code H	NxtGn-INV&CONV(UPS)-000-048-030-1-027-012-012-120					
Inverter						
Code I	NxtGn-INV(UPS)-000-048-100-3-100-048-048-208					
Code J	NxtGn-INV(UPS)-000-048-100-3-080-039-039-208					
Code K	NxtGn-INV(UPS)-000-048-100-3-060-030-030-208					
Code L	NxtGn-INV(UPS)-000-048-100-2-067-032-032-240					
Code M	NxtGn-INV(UPS)-000-048-050-3-047-024-024-208					
Code N	NxtGn-INV(UPS)-000-048-050-2-030-016-016-240					
Code O	NxtGn-INV(UPS)-000-048-050-1-030-016-016-120					
Code P	NxtGn-INV(UPS)-000-048-030-1-027-012-012-120					

Table 1. System Model codes

6.3.2 DC Input wire sizes

	Rated Input DC	Upstream DC	Wire	Ground Wire	
System Code	Nominal Current (A)	Branch Protection	Up to 30°C	Up to 40°C	Size
A, I	2330	3000	9x400 kcmil	9x500 kcmil	400 kcmil
B, J	1864	2500	8x400 kcmil	8x500 kcmil	350 kcmil
C, K	1398	2000	6x400 kcmil	6x500 kcmil	250 kcmil
D, L	1553	2000	6x400 kcmil	6x500 kcmil	250 kcmil
E, M	1087	1600	5x400 kcmil	5x500 kcmil	4/0
F, N	725	1000	3x400 kcmil	3x500 kcmil	2/0
G, 0	777	1000	3x400 kcmil	3x500 kcmil	2/0
H, P	627	1000	3x400 kcmil	3x500 kcmil	2/0

Table 2. DC Input wire size details

6.3.3 AC Input wire sizes

	Rated Input AC	Upstream AC	Wire Size		Ground Wire
System Code	Nominal Current (A)	Branch Protection	Up to 30°C	Up to 40°C	Size
А	319	400	2x 3/0 or 2x 4/0	2x 4/0	3 AWG
В	255	350	2x 2/0	2x 3/0	3 AWG
С	191	250	250 kcmil	300 kcmil	4 AWG
D	319	400	2x 3/0 or 2x 4/0	2x 4/0	3 AWG
Е	149	200	3/0 or 4/0	4/0	6 AWG
F	149	200	3/0 or 4/0	4/0	6 AWG
G	319	400	2x 3/0 or 2x 4/0	2x 4/0	3 AWG
Н	260	350	2x 2/0	2x 3/0	3 AWG
I	301	400	2x 3/0 or 2x 4/0	2x 4/0	3 AWG
J	240	300	2x 1/0	2x 2/0	4 AWG
K	180	225	4/0	300 kcmil	4 AWG
L	301	400	2x 3/0 or 2x 4/0	2x 4/0	3 AWG
M	140	175	2/0	3/0 or 4/0	6 AWG
N	140	175	2/0	3/0 or 4/0	6 AWG
0	301	400	2x 3/0 or 2x 4/0	2x 4/0	3 AWG
Р	248	350	2x 2/0	2x 3/0	3 AWG

Table 3. AC Input wire size details

6.3.4 AC Output wire sizes

	Rated Output	AC Output Branch	Wire	Ground Wire	
System Code	Nominal Current (A)	Protection	Up to 30°C	Up to 40°C	Size
A, I	344	450	2x 4/0	2x 300 kcmil	2 AWG
B, J	275	350	2x 2/0	2x 3/0	3 AWG
C, K	200	250	250 kcmil	300 kcmil	4 AWG
D, L	344	450	2x 4/0	2x 300 kcmil	2 AWG
E, M	160	200	3/0	4/0	6 AWG
F, N	160	200	3/0	4/0	6 AWG
G, 0	344	450	2x 4/0	2x 300 kcmil	2 AWG
H, P	275	350	2x 2/0	2x 3/0	3 AWG

Table 4. AC Output wire size details

Note:

An external AC (upstream and output) and external DC disconnect devices to be provided by others during installation.

An external AC (upstream and output) and external DC over current protection to be provided by others during installation.

6.4 External Maintenance Bypass Switch

- CE+T offers specialized bypass units compatible with your inverter system. If an external bypass is required, please consult your sales representative.
- EMBS units from other manufacturers are not compatible due to UL restrictions.
- Part numbers:

System Code	UPS System	EMBS Part Number				
Inverter and Conv						
Code A	NxtGn-INV&CONV(UPS)-000-048-100-3-100-048-048-208	T60950N144				
Code B	NxtGn-INV&CONV(UPS)-000-048-100-3-080-039-039-208	T60950N144				
Code C	NxtGn-INV&CONV(UPS)-000-048-100-3-060-030-030-208	T60950N144				
Code D	NxtGn-INV&CONV(UPS)-000-048-100-2-067-032-032-240	T60950N144				
Code E	NxtGn-INV&CONV(UPS)-000-048-050-3-047-024-024-208	T60950N072				
Code F	NxtGn-INV&CONV(UPS)-000-048-050-2-030-016-016-240	T60950N072				
Code G	NxtGn-INV&CONV(UPS)-000-048-050-1-030-016-016-120	T60950N072				
Code H	NxtGn-INV&CONV(UPS)-000-048-030-1-027-012-012-120	T60950N072				
Inverter	Inverter					
Code I	NxtGn-INV(UPS)-000-048-100-3-100-048-048-208	T60950N144				
Code J	NxtGn-INV(UPS)-000-048-100-3-080-039-039-208	T60950N144				
Code K	NxtGn-INV(UPS)-000-048-100-3-060-030-030-208	T60950N144				
Code L	NxtGn-INV(UPS)-000-048-100-2-067-032-032-240	T60950N144				
Code M	NxtGn-INV(UPS)-000-048-050-3-047-024-024-208	T60950N072				
Code N	NxtGn-INV(UPS)-000-048-050-2-030-016-016-240	T60950N072				
Code O	NxtGn-INV(UPS)-000-048-050-1-030-016-016-120	T60950N072				
Code P	NxtGn-INV(UPS)-000-048-030-1-027-012-012-120	T60950N072				
-	Bottom Plinth for End-of-Aisle Applications	T60900F000				

Table 5. EMBS Part Numbers

7. System Installation

7.1 Site Preparation

- Refer to section 6, page 17 to identify the type of system and configurations.
- Input and output protections.

When installing Next Gen systems, UL489 listed AC upstream (input), and downstream (output) circuit breakers are required.

At Input

Branch circuit protection breaker should be provided in upstream switchgear regardless of any protective device already installed at the input of the Next Gen.

At Output

An appropriate branch protection should be provided between Next Gen and the loads.

Output distribution should be structured to guarantee tripping segregation. Contact the manufacturer for recommendations and calculation methodology.

- Refer to section 6, page 17 for sizing protections and connecting cables. All cables must be copper rated for min 90°C (194°F).
- · All cables must be C-UL-US or CSA Listed cables.
- All cables lugs must be C-UL-US or CSA listed. They must be sized according to the rated current of the converter system and to the customer terminal connection.
- Wire all positions for future expansion.
- Input AC / Output AC / Input DC / Signal cables shall be separated.
- · Cable crossings shall be done in 90 deg angles.
- Empty converter positions shall be covered with blanks.
- Next Gen is designed for temperature controlled (35°C / 95°F max) and clean environments. The presence of airborne particles such as urban dust, sand, metallic dust, and corrosive vapors is forbidden. Install only in a controlled environment.

7.1.1 Transformer and Generator Sizing

The converter is capable of operating at 125% of rated capacity for 15 seconds.

- Transformers supplying AC to the converter should be sized at a minimum of 1.25 times the kVA rating of the converter to meet this requirement.
- Generators supplying emergency AC to the building and to the converter should be sized at a minimum of 2 times the kVA rating of the converter.
- If the output waveform of the Generator/Transformer can be guaranteed even in Overload conditions 125% for 15 seconds, then the Transformer/Generator Sizing could be same as SYS Capacity.

7.2 Unpacking the system

CE+T cabinets are always fixed upright on a pallet and then wrapped.

The NextGen INV system is delivered with each cabinet in an upright position, bolted to its own pallet. Each crate is equipped with a shock-watch device for easy indication if unit has been mis-handled during shipment.

Uncrate the unit from its shipping crate and perform a thorough inspection for any damage as well as a complete inventory of equipment and accessories.

Uncrate the batteries as per the instructions provided in the battery shipment.

7.3 Module packing

Modules ordered with the system are packed separately in a carton or a pallet.

Module packing material shall be taken apart and stored in case of return under warranty. Improper packing of a returned module may void the warranty.

7.4 Anchoring the cabinet to the floor

The Next Gen cabinet contains eight holes of each 15 mm diameter at the bottom for floor fixing. Place the system in an upright position on the floor and fix it with four holes. (Refer below footprint for the holes marking).

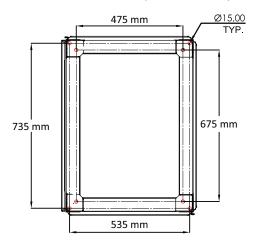


Figure 3. Anchor hole locations

Note: When installing the system, allow for a front clearance of 36 inch, and a rear clearance of 12 inch to allow for adequate working space and heat dissipation. Consult your local jurisdiction for any deviations.

7.5 Cabling

Check section 6, page 17 to identify system configuration. Refer section 6.3, page 18 for cable sizes and ratings for DC, AC input, and AC output. Also refer to section 7, page 22 for important safety notices.

Operating and operator-servicing instructions must be separated from servicing instructions.

Warning – These servicing instructions are for use by qualified personnel only. To reduce the risk of electric shock, do not perform any servicing other than that specified in the operating instructions unless you are qualified to do so.

7.5.1 Cable Inlets

Use appropriate collar to fix the conduits to the cabinet roof panel.

The top panel may be removed to facilitate placement of conduit knockouts where needed without introducing foreign contaminates into the system. The electrical contractor may place the AC knockouts at any point in the cabinet top cover.

Cables entrances should be protected by bushings, UL category NZMT2, rated for minimum. 50°C.

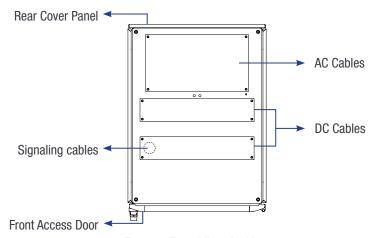


Figure 4. Top cabling - Positions

Note: When placing conduit knockouts in top panel, the panel may be removed to avoid contamination of system interior with metal shavings.

Alternatively, cable entry into the system may also be through the cabinet bottom in a raised floor application. Remove the necessary bottom entry panels when installing the AC cables from the bottom.

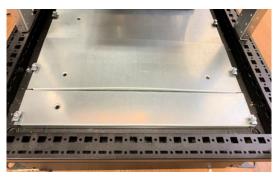


Figure 5. Bottom cabling - Positions

7.5.2 Grounding

The main protective conductor connection is made to the X2 (AC IN) terminal, which is marked with a symbol for identification.

The ground must be terminated even if commercial Mains are not available. Recommended cable cross section is the size equal (min) to Neutral cable cross section.

The ground has to be connected in accordance with local code and NEC - NFPA 70. Next Gen is only intended for Common Bonding Network (CBN).

7.5.3 AC Input and Output

If local codes require grounding of this circuit, use the PE output terminal bonding that circuit to the enclosure and ground the enclosure to a suitable grounding electrode in accordance with local code requirements.

WARNING! Recommendation of IEC 60364 4. 43

431.3 Disconnection and reconnection of the neutral conductor in multi-phase systems

Where disconnection of the neutral conductor is required, disconnection and reconnection shall be such that the neutral conductor shall not be disconnected before the line conductors and shall be reconnected at the same time as, or before, the line conductors.

Caution: If AC Input is connected, the Neutral-Ground bonding jumper cable shall be removed during installation.

The following hardware (or equivalent) shall be used when connecting the AC input / output cables (Hardware not included).

NextGen-3-100kW	Panduit	LCAX300-38-6	300MCM	3/8" Single Hole
NextGen-3-50kW	Panduit	LCAX4/0-38-X	4/0 AWG	3/8" Single Hole

7.5.3.1 Torque - AC Input and Output

System	AC IN and OUT	Lug type	Torque ft-lb	Metric Equivalent	CE+T Standard Torque ft-lb
NextGen INV	3/8-24 UNF Bolt connection on copper bar	Single hole (Hole - 3/8")	17.70	M10	17.70

Table 6. AC Input and Output - Torque details

7.5.4 DC Input

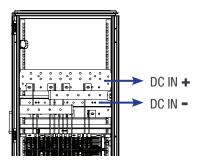


Figure 6. DC Position

All cables must be C-UL-US or CSA Listed cables.

All cables lugs must be C-UL-US or CSA listed. They must be sized according to the rated current of the converter system and to the customer terminal connection.

7.5.4.1 Single feed DC Input

The INV unit is equipped with common DC input points to facilitate ease of connection to the DC source, or battery. Use only compatible double-hole lugs when installing the DC cable connections.

- DC positive is a single bar with (8x) termination points for customer use. Each point is a double-hole (3/8 in) with hole spacing set at 1 inch. Use only 3/8 inch (or M10) hardware when making DC connections
- DC negative has four (4x) bars and they are inter-connected with a horizontal bar

DC Load: The following hardware (or equivalent) shall be used when connecting the DC load cables (Hardware not included).

350 MCM	Panduit	LCCX350-38D-6	3/8" Stud Hole	1" Center Double Hole
250 MCM	Panduit	LCCX250-38D-X	3/8" Stud Hole	1" Center Double Hole
4/0 MCM	Panduit	LCCX4/0-38D-X	3/8" Stud Hole	1" Center Double Hole
3/0 MCM	Panduit	LCCX3/0-38D-X	3/8" Stud Hole	1" Center Double Hole

Note: Screws, nuts and cable shoes are not included in the delivery.

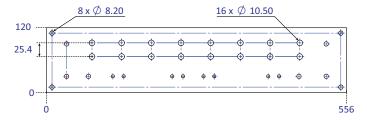


Figure 7. DC Positive and negative bar hole details

7.5.4.2 Torque - DC Input

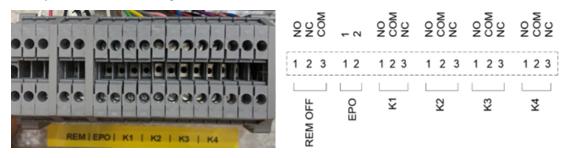
System	DC	Lug type	Torque ft-lb	Metric Equivalent	CE+T Standard Torque ft-lb
NextGen INV	3/8-24 UNF Bolt connection on copper bar	Double hole (Hole - 3/8")	17.70	M10	17.70

Table 7. DC Input - Torque details

All cables must be C-UL-US or CSA Listed cables.

All cables lugs must be C-UL-US or CSA listed. They must be sized according to the rated current of the converter system and to the customer terminal connection.

7.5.5 Signal Cable - Customer Connections


The Alarm cable shall be routed from the top through the knockout by installer and routed through the sides until the bottom to reach the alarm terminal blocks on the front.

The Alarm cables shall be grouped together and protected with sleeves around. This shall be tied/fastened with cable tie wraps or routed through inside the cable ducts/tray of required sizes installed on the routed path. The Alarm cables were protected by this way from the high voltage area. Please refer to the routing layout as shown in the picture below:

Customer/Installer refer to the Instruction manual for the alarm terminal block location and terminal identification for the connections as specified by the manufacturer.

All relays are shown in non energized state.

Note: Output relays are time delayed factory default set to 30 seconds, User settable from 2 to 30 seconds.

7.5.5.1 Alarm (X3)

Relay characteristics X3 (4x Programmable Relay contacts, 2x Preset Relay contacts)

Switching Power 60 W

Rating
 2A @ 30Vdc / 1A @ 60 Vdc / 0.5A @ 120Vac

• Maximum wire size 18 AWG

Relay K1 Programmable
Relay K2 Programmable
Relay K3 Programmable
Relay K4 Programmable

Relays are normally energized (no alarm) and contacts are released when the alarm event occurs.

Relay K5 & K6 are for CE+T internal use only.

7.5.5.2 EPO (X6)

Auxiliary contacts on X6 for a forced LVD open. EPO contacts should also be connected to the system AC input (or building AC input) circuit breaker.

Signal voltage DC Bus Voltage

Signal Power 25 WSignal Current 500mAMaximum wire size 18 AWG

7.5.5.3 Remote ON/OFF (X7)

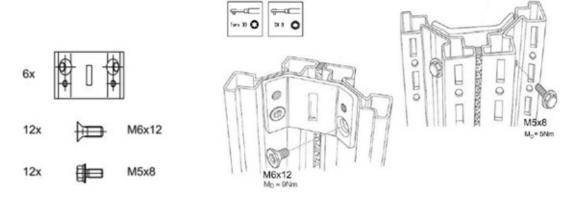
Note: They system is by default equipped with a connection between pin 3 & 2. If a remote ON/OFF is not used, the jumper strap shall remain.. Should the remote ON/OFF be used, the strap shall be replaced with a changeover contact or emergency button.

- · The remote ON/OFF turns the AC output OFF.
- Input AC and input DC is not affected by the remote ON/OFF.
- The remote ON/OFF requires Form-C changeover contacts, one input opens as the other closes. If both transitions are not detected, the status of the system does not change.

Signal voltage +5 VdcMax wire size 18 AWG

WARNING! If Remote ON/OFF is not used, pin 2 & 3 shall be bonded together.

7.5.6 Field Wiring Kits


The Field wiring kits are delivered and sent along with the Nextgen system in a packed carton box which includes the following list of items as shown below:

- 1. Inter-Bay Connecting Brackets Zinc plated steel Quantity 6 PCs.
- 2. Chassis Ground Bonding Conductor R/C (AVLV2), 300 V, 105°C, VW-1, Quantity 1, sized as follows:

Maximum Input Current	Minimum Bonding Conductor Size		
Rating of INV (A)	Option 1	Option 2	
319	Two 1/0	400 kcmil	
301	Two 1/0	400 kcmil	
255	Two 1/0	250 kcmil	
240	Two 1 AWG	250 kcmil	
191	Two 2 AWG	4/0	
180	Two 2 AWG	3/0	
149	Two 4 AWG	1/0	
140	Two 4 AWG	1/0	

7.5.6.1 Field Wiring Kit Mounting Procedure

A) Inter-Bay Connecting Brackets The mounting brackets are used to interconnect two INV cabinets together for mechanical reinforcement. There are 6 brackets available in the kit with mounting screws (Refer to below picture). Use appropriate tools to fix the mounting bracket to the cabinet.

- B) Chassis Ground Bonding Conductor: The bonding conductor is a copper bar, sized as tabulated below, and is bonded to the chassis via green/yellow cable. Main input bonding conductor is secured by its own screw, separate from all other bonding conductors.
 - Connect one end of the bonding conductor to the chassis and other end to the grounding terminal bus bar.

7.6 Cabinet Paralleling using PEK

7.6.1 Power Extension Kit (PEK)

An Inview X controller can communicate with a maximum of 32 modules Bravo and Sierra 25 only.

The **Power Extension Kit** acts as a **solution** to communicate with more than 32 modules. Several **Power Extension Kits** can be used to expand the maximum power capacity that can be reached into a single system, up to 270 modules.

The Main Power Extension Kit is made up of two core components:

A Tri-GW module which is a gateway between the modules and the InView X controller, allowing for bi-directional communication with 3 groups of 30 modules. Measurement and operational data from the Sierra/Bravo 25 modules are aggregated in the Tri-GW and passed on to the InView controller. Configuration changes are passed down from the InView controller to each individual module.

Two Tri-Sync modules provide fully redundant low-level synchronization and load management functionality. If a Tri-Sync module fails, the fully redundant second unit will take over to keep the system running. If a Tri-GW fails, then the individual modules will keep running using the settings saved in a local copy of the configuration. Aggregated data from the modules may however not reach the InView controller.

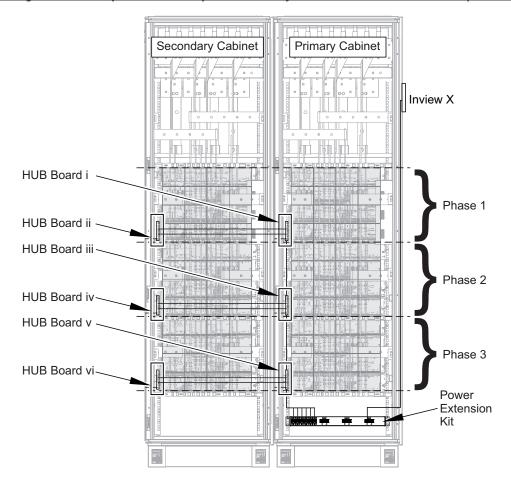
The Power Extension shelf in which the modules are inserted is 1U 19" rack mountable. It can easily be installed at the bottom of the cabinet.

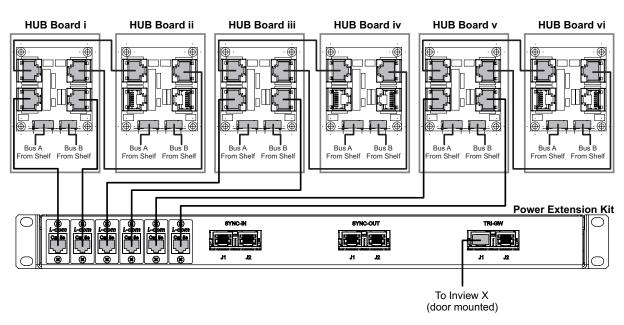
7.6.2 Power Extension Kit connections with the system

The **main stages** of cabling procedure for a system that has one to three Power Extension Kits i.e., three sub-systems, is given below. Refer to the illustrations provided after the procedure for more clarity and details on specific system configuration.

The following procedure is applicable for both single and three-phase systems.

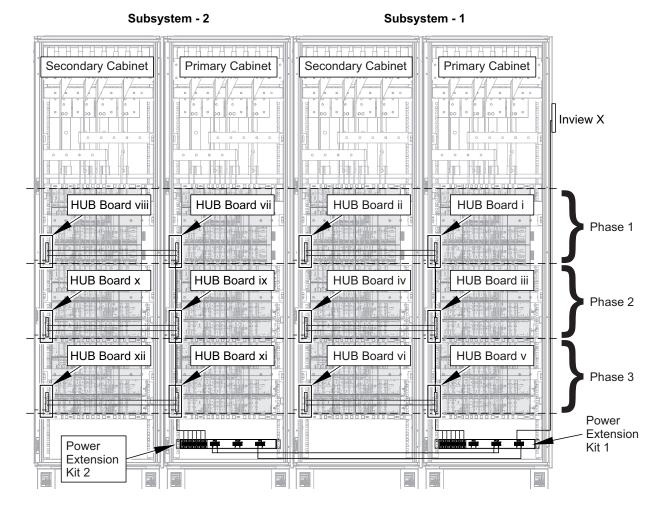
Important Note! Make sure not to mis-match the Bus A and Bus B connectors. Note that a sub-system is defined as a set of several cabinets managed by the same Power Extension Kit.

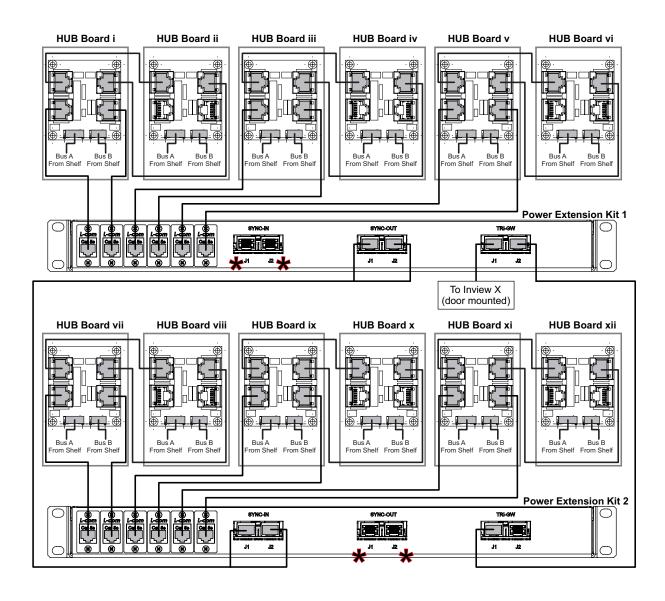

- Connect the Bus A and Bus B connectors of the L1 shelves to the Bus A and Bus B connectors of the respective hub boards in each cabinet using flat cables.
- Connect the hub boards of the primary and secondary (if any) cabinets together using Ethernet cable.
- Follow the same for L2 and L3.
- Connect the Bus A and Bus B connectors of the L1 Primary cabinet hub board, to the 'Hub 1' connectors (J5 and J4) on the Power Extension Kit.
- Connect the Bus A and Bus B connectors of the L2 Primary cabinet hub board, to the 'Hub 2' connectors (J5 and J4) on the Power Extension Kit.
- Connect the Bus A and Bus B connectors of the L3 Primary cabinet hub board, to the 'Hub 3' connectors (J5 and J4) on the Power Extension Kit.
- Follow the above steps for all Power Extension Kits.
- Connect the SYNC-OUT connectors (J1 & J2) of the Power Extension Kit located in first subsystem with the SYNC-IN connectors (J1 & J2) of the Power Extension Kit located in second subsystem (not applicable for system with a single Power Extension Kit).
- Connect J1 and J2 of SYNC-IN from Primary cabinet of second subsystem and connect J1 & J2 of SYNC-OUT at primary cabinet of 3rd subsystem (only applicable with 3 Power Extension Kits).
- Terminate the SYNC-IN connectors (J1 & J2) of first subsystem and SYNC-OUT connectors (J1 & J2) of the last subsystem (not applicable for system with a single Power Extension Kit).
- All the Tri-GW installed on the primary cabinet of subsystems must be connected in parallel using Ethernet cable
 by interconnecting the J1 and J2 connectors of Tri-GW modules (not applicable for system with a single
 Power Extension Kit).
- Connect J1 of Tri-GW installed on the Primary cabinet of subsystem 1 to ETH2 port of Inview X.



7.6.2.1 Diagram for 1 Power Extension Kit

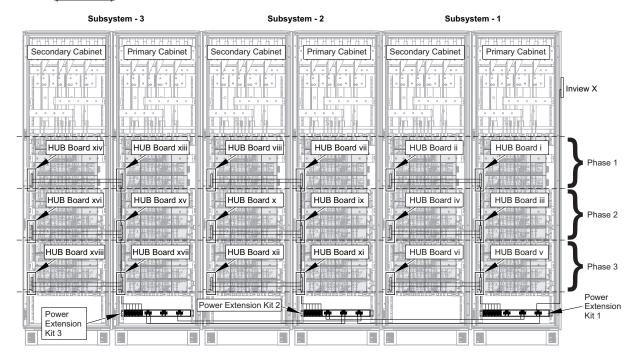
Cabling for '3 Phase Input / 3 Phase output - 270 KVA' system with 1 Power Extension Kit (Rear view)



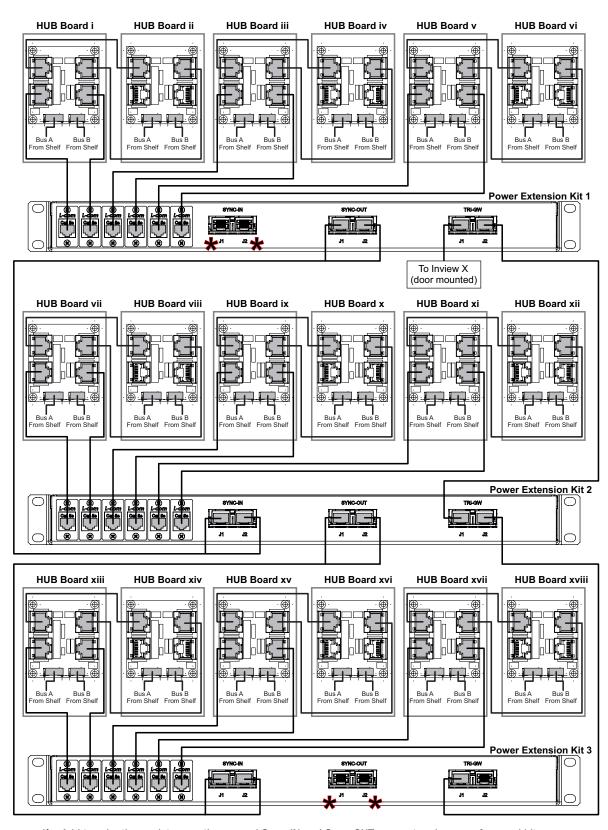


7.6.2.2 Diagram for 2 Power Extension Kits

Cabling for '3 Phase Input / 3 Phase output - 580 KVA' system with 2 sub-systems and 2 Power Extension Kits (Rear view)

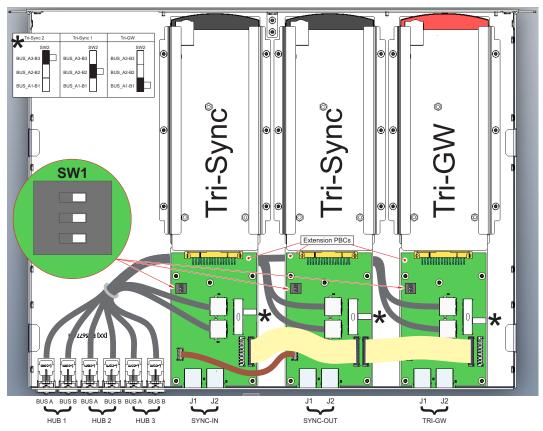


*) - Add termination resistors on the unused Sync-IN and Sync-OUT connectors in case of several kits.



7.6.2.3 Diagram for 3 Power Extension Kits

Cabling for '3 Phase Input / 3 Phase output - 810 KVA' system with 3 sub-systems and 3 Power Extension Kits (Rear view)



*) - Add termination resistors on the unused Sync-IN and Sync-OUT connectors in case of several kits.

7.6.3 ID and Phase configurations of the Power Extension Kit

To access the Toggle and DIP switches, the top panels of the kit must be removed. The kit has three extension PCBs that are connected to the Tri-Sync (2) and Tri-GW modules. Each extension PCB has a DIP switch *SW1* on and a Toggle switch.

7.6.3.1 Toggle Switch

The position of the **Toggle switch** correlates the hubs with their respective group of modules (max 30 per group). For three-phase systems, a group should be assimilated to a phase within a single kit. By default, the toggle switch positions are as listed below:

- BUS_A1-B1 for HUB 1
- BUS A2-B2 for HUB 2
- BUS_A3-B3 for HUB 3

7.6.3.2 DIP Switch

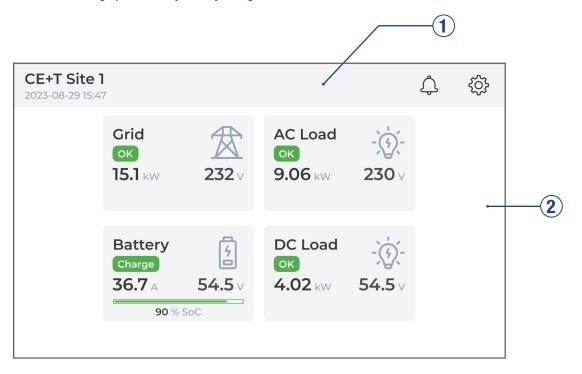
The **DIP switch** allows to identify the different subsystems that can be connected together. By default (one single subsystem), the DIP switch setting is 000. Each additional subsystem will need its own unique DIP switch setting (000 for the first kit, 001 for the second kit and 010 for the third one.).

CAUTION! The DIP switch setting must be the same for all three extension boards inside a Power Extension Kit. Failing to assign the same settings will result in system malfunctions, such as modules not starting, Tri-Sync alarms and Tri-GW not reachable by ethernet.

To identify the Tri-GWs in a multi-sub system solution, the DIP switch also defines the IP addresses of the Tri-GWs. As a Tri-GW contains three GWs, the following IP addresses are obtained:

- Setting 000 implies addresses 10.250.251.1, 10.250.251.2 and 10.250.251.3.
- Setting 001 implies addresses 10.250.251.4, 10.250.251.5 and 10.250.251.6.
- Setting 010 implies addresses 10.250.251.7, 10.250.251.8 and 10.250.251.9.

The general rule for determining the IP addresses of a Tri-GW in a given cabinet is IP Address (GW_{Index}) = 10.250.251.[GW_{Index} + 3 * DIP_SETTING]. GW_{Index} ranges from 1 to 3 and DIP setting ranges from 0 to 2.



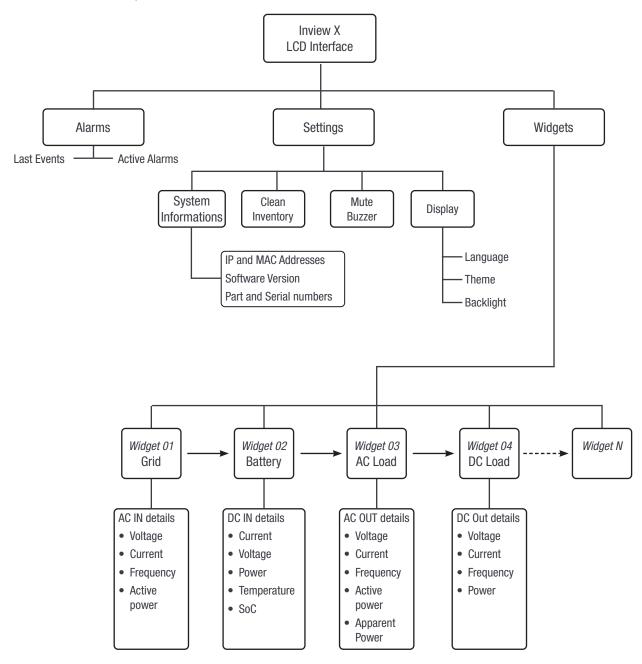
8. Operation

8.1 Inview X - LCD Interface

Inview X LCD interface is a 7-inch touch screen. Through the LCD interface, the user can view and access the system details. Once the system is powered upon, the Inview X is up and ready for operation.

Note: Interface graphics and layout may change based on firmware version.

- [1] Header: Displays the Site name, Date and Time.
 - Events: Tapping on A goes to Alarms and Events screen.
 - Administration: Tapping on provide access to different action screens.
- [2] Interface Area: Tapping on the widget provides the corresponding parameter information.


Provides information about the corresponding screen. In some screens, left and right navigation buttons appear, indicating more screens are present.

• **Navigation arrows** for the next and previous pages. Up and down arrows appear on some screens, indicating more information is present.

8.1.1 Menu Structure

The below tree provides an overview of the menu structure in the Inview X LCD interface.

8.1.2 LED Indications

Three LED's are present behind the front white plastic of the controller to indicate major alarm, minor alarm, and system status. These LED's are not visible until they illuminate during the corresponding action occurs.

Light Blue: Normal Operation

Orange: Minor Alarm

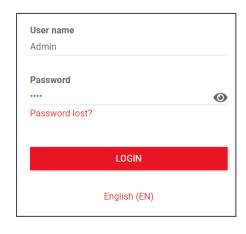
Red: Major Alarm

8.2 Inview X - Web Interface

The Inview X web interface provides efficient and user-friendly access to the system, and it can be accessed to the laptop through ETH port.

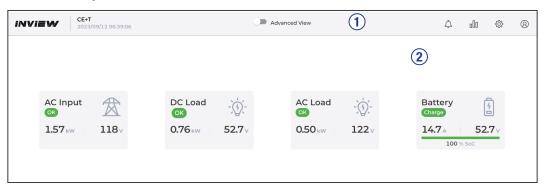
This section provides an overview of the web interface, refer the Inview user manual for detailed information.

8.2.1 Login

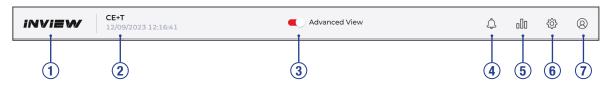

Open the web browser, type the default IP address **10.250.250.1** in the address field and press enter.

Note: Use any of the latest web browsers: Google Chrome, Mozilla Firefox, Safari, or Microsoft Edge.

Inview X has three login – Basic, Expert and Admin. All three login is password protected.

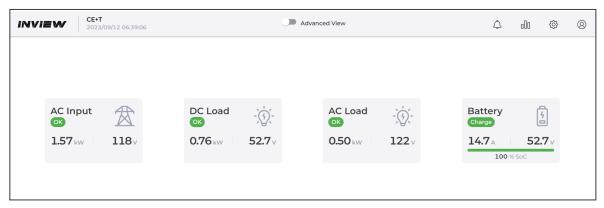

The default password for all three logins is "1234".

An auto-logout feature is available to avoid a user being connected all the time. When no action is performed for more than 10 minutes, the session will expire and goes go to the login screen.


8.2.1.1 Interface Areas

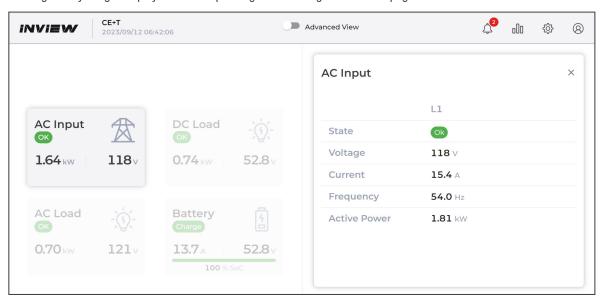
- 1 → Header
- 2 → Home Page

8.2.1.2 Header



The icons on the header provide quick access to the corresponding pages.

- 1 → Home: Clicking on *INVIEW* logo goes to the home page from any page you are accessing in the interface.
- 2 → Display the date, time and site name of the system.
- 3 → Configuration: Click on Advanced View to toggle between Configuration and Widget or Dashboard page.
- $4 \rightarrow$ Alarms: Clicking on goes to the Alarm page, where active alarms and last events are listed.
- $5 \rightarrow$ **Reporting**: Clicking on goes to Reporting page, where Data records and Site details are available.
- 6 → Administration: Clicking on goes to the Administration page and provides access to many action pages such as User management, Software update, Configuration files, Reports, References, Languages selection, Support package, Time management, Events log and Licensing.
- **7** → **User Context:** Clicking on provides the information of login account such as Basic, Expert or Admin, Quick Links to Save Configuration and reboot controller, Website links to download software and documents, Device and network information, Change Password and Logout.


8.2.2 Home Page

The default home page is Widgets to display system information briefly. On the Widgets home page, a maximum of 20 widgets can be configured.

Clicking on any widget displays the corresponding details on right side of the page.

Note: For more information on the Inview display, refer to the Inview manual available upon request.

8.3 Switching off the system

Perform the following steps to switch off the system:

CAUTION! When switching OFF the system, the power to the critical load will be disconnected.

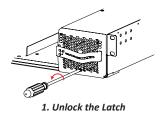
- 1. Switch OFF AC Output Breakers.
- 2. Switch OFF AC Input Breakers.
- 3. Switch OFF DC Input Breakers.
- 4. Switch OFF the Upstream and Downstream Breakers.

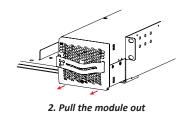
DANGER! Risk of electric shock. Capacitors store hazardous energy. Wait at least five minutes after disconnecting all sources of power before removing any protective covers.

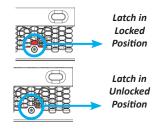
DANGER! Risk of electric shock. This power equipment receives power from more than one source. Disconnect AC and DC sources to de-energize this unit prior to servicing.

9. Inserting/removing/replacing - modules

9.1 Sierra Converter

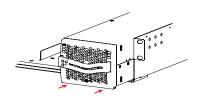

- The Sierra converter is hot swappable.
- When a new module is inserted in a live system it automatically takes the working set of parameters.
- When a new module is inserted in a live system it is automatically assigned to the next available address.


Caution: After removing a module from a slot in a live system, wait at least 60 seconds before inserting it into another slot; ensure that the LEDs are off and the fan is completely stopped.

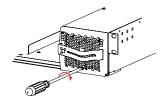

9.1.1 Removal

Caution: When one or several converter modules is/are removed, possible to access the live parts. So, replace the module(s) with dummy modules without delay.

- 1. Rotate the screw counter-clockwise with a #P1 Phillips-head screwdriver to unlock the latch.
- 2. Hold the front handle and pull the module out.
- 3. Replace with a new module or a blind unit.



9.1.2 Inserting


- 1. Verify module compatibility (AC & DC Voltage match system configuration).
- 2. Place the module in the shelf and slide in.
- 3. Using the module handle, push firmly until the unit is properly connected.
- 4. Rotate the screw clockwise with a #P1 Phillips-head screwdriver to lock the latch.
- 5. The module will start up and take the first address available on the bus.

2. Slide the module in

3. Push firmly till the connection is properly engaged.

4. Lock the latch.

9.2 Inview X

9.2.1 Replacement of Panel Mount Display

Before removing the Inview X display, take special note of where each cable / wiring harness is connected to the installed display unit.

- 1. Remove all cable connections from the front and rear of the display.
- 2. Remove the mounting screws (4x) from the rear of the display mounting panel.
- 3. Remove the Inview X display unit.
- 4. Place the new Inview X display unit into the door panel.
- 5. Using the screws removed in step 2, affix the display unit to the door panel.
- 6. Reattach all cables and wires removed in step 1.

Fix it with four screws

9.3 Fan replacement

- 1. Let the module rest at least 5 minutes before initiating work.
- 2. The converter front cover must be removed. Use a screw driver and remove the screws on both side of the module.
- 3. Free up the fan. (Note the fan connector and wires position).
- 4. Disconnect the supply cord, and remove the fan.
- 5. Replace with new fan and connect supply cord.
- 6. Place the front cover and tighten the screws on both sides of the module.
- 7. Check fan for operation.
- 8. Access Inview and reset the fan run time alarm from within the action menu.

10. Final check

- Make sure that the sub-rack/cabinet is properly fixed to the cabinet/floor.
- Make sure that the sub-rack/cabinet is connected to Ground.
- Make sure that all DC and AC input breakers are switched OFF.
- Make sure that all cables are sized according to recommendations and local regulations.
- · Make sure that all cables have strain relieved.
- Make sure that all breakers are sized according to recommendation and local regulations.
- Make sure that DC polarity is according to marking.
- Torque all electrical terminations according to recommendation and local regulations.
- Make sure that no converter/controller bays are left open.
- Cover empty converter bays with blanks.
- Make sure that the Remote ON/OFF is appropriately wired according to local regulations.
- Make sure that the point of AC supply meets local regulations.

11. Commissioning

The converter module DC input breaker acts as a protective device. When the modules are inserted into a system the DC breaker can then be turned ON to activate the DC input of the module.

Installation and commissioning must be done and conducted by trained people fully authorized to act on installation.

It is prohibited to perform any insulation test without instruction from manufacturer.

Equipment is not covered by warranty if procedures are not followed.

11.1 Check list

Refer the document "Commissioning Procedure" and available on request.

12. Trouble shooting

12.1 Trouble shooting

Converter module does not power up: Check AC input present and in range (AC breakers)

Check DC input present and in range (DC breakers)

Check that the converter is properly inserted

Remove converter to verify that slot is not damaged, check connectors

Check that module(s) is (are) in OFF state

Check for loose terminations

Converter system does not start: Check that Inview X is present and properly inserted

Check remote ON/OFF terminal

Check the configuration and setting

Check threshold level

Converter only run on AC or DC: Check AC input present and in range (AC breakers)

Check DC input present and in range (DC breakers)

Check the configuration and setting

Check threshold level(s)

No output power: Check output breaker

All OK but I have alarm: Check configuration file and correct No of modules

Download/clear log file

No output alarm: Check the default time delay

(UA "Major Alarm" - 60s, NUA "Minor Alarm" - 30s)

Check configuration file

No information on display: Check that Inview X is present and properly inserted

12.2 Defective modules

Unless input power is down, all LED's on each module should be green (see section 8, page 30). No light, orange light, red or flashing light are abnormal conditions. Collect and record the module information. If no fix can be found, replace the module.

12.2.1 Replacing modules

Refer to section 9, page 34 to remove and re-insert modules.

12.2.2 Return defective Inview controller

If no display in the Inview or no communication with the laptop is evidence of failure, proceed as per section 12.2.4, page 49.

12.2.3 Return defective shelf

There are no active devices on the converter module shelf. Due to this failure of the shelf is uncommon and difficult to validate. If it is determined that the shelf is faulty please dispose as per section 12.2.4, page 49.

12.2.4 Return defective modules

- A repair request should follow the regular logistics chain:
 End-user => Distributor or Value Added Reseller => CE+T Power.
- Before returning a defective product, a RMA number must be requested through the http://my.cet-power.com. Repair registering guidelines may be requested by email at tech.support@cetamerica.com.
- The RMA number should be mentioned on all shipping documents related to the repair.
- Be aware that products shipped back to CE+T Power without being registered first will not be treated with high priority!
- · While returning the defective module, should mention all the details in the RMA document.

12.3 Spare Parts

CE+T Recommends that the following spare parts are maintained on site in critical facilities applications.

Item	Part Number	Effect on system when failed
Sierra_25-48-120 Power Module	T7213302Z1	Reduced load capacity
Inview X Panel Mount Controller	T602004200	Loss of remote monitoring Battery Charging Safe Mode
Inview_GW Triple Port	T602004050	Loss of remote monitoring Battery Charging Safe Mode
Battery Measure Box	T602006000	Loss of charging temperature compensation Loss of LVD control (LVD will not change state)
Temperature Probe	V092099366	Loss of charging temperature compensation
NEXTGEN – SYNC MODULE	T602004051	No affect – redundancy built in - Loss of phase control if all PEK modules fail

13. Service

For Service

- Check Service Level Agreement (SLA) of your vendor. Most of the time they provide assistance on call with integrated service. If such SLA is in place, you must call their assistance first.
- If your vendor doesn't provide such assistance (*) you may contact CE+T by calling toll free Number +1-855-669 - 4627(**) or tech.support@cetamerica.com

Normal service hours are 8:00 AM to 5:00 PM Eastern Time, Monday through Friday, except closing periods for holidays or inclement weather.

Critical/emergency conditions by calling +1-855-669-4627 or emailing tech.support@cetamerica.com

- (*) CE+T will redirect your call to your vendor if he has such SLA in place.
- (**) Valid in USA and Canada only.
- (***) Messages that are not Major Incident or Emergency will be served at the next scheduled working day.

14. Maintenance Task

As maintenance can be performed on live system, all tasks should be performed only by trained personnel with sufficient knowledge on ECI products.

Tasks:

- 1. Verify all module addressing is correct. Correct if necessary (i.e.: 1st module in slot 1 should have module addressed as #1).
- Verify all modules AC input assignments match AC output phase assignment. Do not change output phase assignments.
- 3. Download and save a copy of system Configuration file.
- 4. Download and save a copy of system History Log file.
- 5. Record all module serial numbers and associated temperatures.
- 6. If present, replace the door air filter.
- 7. Clean the system and modules with vacuum. (this step may be performed while on bypass step 13)
- 8. Re-Torque all battery terminals to 5.8 Nm. (this step may be performed while on bypass)
- 9. Wipe down cabinet exterior with a dry dust-cloth.
- 10. Check all internal electrical connections for hot-spots using an infrared camera.
 - a) Removal of some cover panels may be necessary. Re-install cover panels when finished.

Note: Steps 11, 12, & 13 are recommended, but not required. Consult building manager prior to performing these steps.

- 11. Simulate a module failure:
 - a) Remove one module from the system.
 - b) Verify alarm is active.
 - c) Verify alarm on remote monitoring.
 - d) When module fan has stopped spinning, reinsert module into system.
- 12. Simulate a loss of Mains AC. (Do not perform if no DC is present on the system.)
 - a) Open AC input breaker.
 - b) Verify alarm is active.
 - c) Verify alarm on remote monitoring.
 - d) Restore Mains AC to system when alarm has been verified.

Warning! When system is on BYPASS, the load is subject to any Mains AC disturbances. Appropriate precautions should be taken to ensure continuity of power to the critical load.

- 13. If system is equipped with an external bypass, test the function of the bypass. While system is on external bypass, perform the following checks:
 - a) Verify all non-manufacturer connected cables are torqued as per the unit's user manual.
 - b) If necessary, update individual module firmware.

- 14. If necessary, update the Inview and MBB firmware.
- 15. Clear the History Log file.
- 16. Take a photo of system.
- 17. Take a photo of system data plate.

